CARIBBEAN PAPER

TEST CODE 02112020 MAY/JUNE 2008

FORM TP 2008167

4

CARIBBEAN EXAMINATIONS COUNCIL

ADVANCED PROFICIENCY EXAMINATION

CHEMISTRY

UNIT 1 - PAPER 02

2 hours 30 minutes

READ THE FOLLOWING INSTRUCTIONS CAREFULLY

- 1. This paper consists of SIX compulsory questions in TWO sections.
- 2. Section A consists of THREE structured questions, one from each Module. Section B consists of THREE extended response questions, one from each Module.
- 3. For Section A, write your answers in the spaces provided in this booklet. For Section B, write your answers in the answer booklet provided.
- 4. ALL working must be shown.
- 5. The use of non-programmable calculators is permitted.
- 6. A data booklet is provided.

SECTION A

Answer ALL questions in this section. Write your answers in the spaces provided in this booklet.

MODULE 1

FUNDAMENTALS IN CHEMISTRY

1. The manganate(VII) ion reacts in an acidic medium according to the following half equation:

 $MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_{2}O.$

(a) (i) Define reduction and oxidation in terms of oxidation number.

[2 marks]

(ii) Identify the role played by the MnO_4^- ion in the redox reaction above and explain your answer in terms of oxidation number.

[2 marks]

(b) An aqueous solution of potassium iodide, KI, reacts with acidified MnO_4^- to form a redbrown solution on completion of the reaction.

(i) Identify the species responsible for the red-brown colour.

[1 mark]

(ii) Given that iodide ions react according to the following half equation,

 $2I^{-}(aq) \rightarrow I_{2}(aq) + 2e^{-}$

deduce the balanced equation for the redox reaction between MnO_4^- and I⁻.

[3 marks]

(c) Compounds X and Y are tested for their reducing and/or oxidizing properties with MnO₁⁻(aq) and I⁻(aq) separately. The results are shown in Table 1.

	x	Y
MnO ₄ ⁻ (aq)	(i) MnO ₄ ⁻ (aq) decolourized	(i) MnO ₄ ⁻ (aq) decolourized
I⁻(aq)	(ii) Red-brown solution formed	No visible change

TABLE 1: RESULTS OF TESTS ON COMPOUNDS X AND Y

Categorise X and Y in terms of their oxidizing and reducing properties based on the above results.

(d) Complete the following table by filling in the missing observations or inferences.

Test	Observation	Inference
$MnO_4^-(aq)$ is added to a solution containing Fe ²⁺ (aq).	(i) • (ii) •	 (i) Fe³⁺ ions produced
MnO_4^- (aq) is added to a solution containing $SO_3^{2^-}$ followed by $BaCl_2(aq)$.	 (iii) • White precipitate forms on addition of BaCl₂(aq). 	• MnO ₄ ⁻ reduced to Mn ²⁺ (iv) •

[5 marks]

Total 15 marks

KINETICS AND EQUILIBRIA

Use the following electrochemical data to construct the labelled cell diagram for the (a) combined half-cells.

 $\begin{array}{rll} Cu^{2+} \, / \, Cu & E^0 & = \, + \, 0.34 \ V \\ Ag^+ \, / \, Ag & E^0 & = \, + \, 0.80 \ V \end{array}$

[4 marks]

(b) Write the relevant half-equations for the change taking place at the (i) anode [1 mark] (ii) cathode. [1 mark] (c) Write the equation for the overall cell reaction. [1 mark] GO ON TO THE NEXT PAGE

2.

(d)			
	(ii)	Give ONE reason for your answer to (d) (i).	[1 mark]
(e)	Calcul	ate the cell potential.	[1 mark]
			[1 mark]
(6)			
(1)	(i)	Describe THREE changes you would observe if you substituted the Ag half-cell in your cell diagram in (a) on page 4. $Zn^{2+}/Zn = E^{\theta} = -0.76 V$	a zinc half-cell for
(1)	(i)	the Ag half-cell in your cell diagram in (a) on page 4. $Zn^{2+}/Zn = E^{\theta} = -0.76 V$	
(1)	(i)	the Ag half-cell in your cell diagram in (a) on page 4. $Zn^{2+}/Zn = -0.76 V$	
(f)	(i) (ii)	the Ag half-cell in your cell diagram in (a) on page 4. $Zn^{2+}/Zn = -0.76 V$	
(1)		the Ag half-cell in your cell diagram in (a) on page 4. $Zn^{2+}/Zn = -0.76 V$	[3 marks]
		the Ag half-cell in your cell diagram in (a) on page 4. $Zn^{2+}/Zn = E^{\theta} = -0.76 V$ Suggest ONE reason for the changes observed in (f) (i) above.	[3 marks]
	(ii)	the Ag half-cell in your cell diagram in (a) on page 4. $Zn^{2+}/Zn = E^{\theta} = -0.76 V$ Suggest ONE reason for the changes observed in (f) (i) above.	[3 marks]

L

:

•

Ĵ

:

3

t

CHEMISTRY OF THE ELEMENTS

3.

(a)

Both Al³⁺ and Pb²⁺ give the same results on addition of NaOH(aq) and NH₃(aq).
 Complete Table 2 by filling in the observations.

Test	Observation
NaOH(aq) is added gradually until in excess.	
NH ₃ (aq) is added gradually until in excess.	ς

TABLE 2: TESTS FOR Al³⁺ AND Pb²⁺

[2 marks]

(ii) Describe a test that could be carried out to distinguish between Al^{3+} and Pb^{2+} ions.

Reagent: _____

Observation:

Inference: _____ [3 marks]

GO ON TO THE NEXT PAGE

02112020/CAPE/F 2008

(b) An accident occurs at a chemical plant that results in a chemical spill. The team of chemists recruited to do the clean-up takes a sample of the spill for analysis.

The results of the analysis are as follows:

A	-	No characteristic colour change is observed on subjecting the sample to a flame test.
B ·		No precipitate is obtained on treatment with AgNO ₃ (aq).
С		The pH of the sample is found to be 1.2.
D	-	The addition of acidified barium chloride results in the formation of a white precipitate.
(i)	v	What deduction can be made about the sample, based on the observation in A?
		[1 mark]
(ii)	V	What does the result in B indicate about the sample?
	-	[1 mark]
(iii)	E	Based on the result in C, what type of compound is present in the sample analysed?
	-	[1 mark]
(iv)	I	dentify the anion present in the sample.
		[1 mark]
(v)		Suggest the identity of the chemical in the spill as indicated by the results of the nalysis.

[1 mark]

02112020/CAPE/E 2000

T

(c)

(i)

B:

Identify the products, A and B, in the reaction scheme below.

[2 marks]

Ż

ъ

(ii) Write the ionic equation for the formation of B.

[2 marks]

(iii) Name the type of reaction illustrated in the conversion of Cu²⁺ (aq) to B in the reaction scheme in (c) (i) above.

[1 mark]

Total 15 marks

SECTION B

- 9 -

Answer ALL questions in this section. Write your answers in the answer booklet provided.

MODULE 1

FUNDAMENTALS IN CHEMISTRY

- (a) The foul odour of dirty socks may be attributed to caproic acid, an organic acid made of carbon, hydrogen and oxygen. The results of combustion of a 0.450 g sample of caproic acid indicate that it contains 0.279 g of C, 0.0467 g of H, and 0.124 g of O.
 - (i) Distinguish between 'empirical formula' and 'molecular formula,' using suitable examples. [3 marks]
 - (ii) Calculate the empirical formula and the molecular formula of caproic acid, given that its molar mass is 116 g mol⁻¹.
- (b) In the standardization of sulphuric acid with anhydrous sodium carbonate, a 1.49 g sample of sodium carbonate is dissolved in distilled water to make 250 cm³ of solution. Three 25.0 cm³ portions of this solution are pipetted and titrated against a solution of sulphuric acid of unknown concentration using screened methyl orange as the indicator. The average volume of sulphuric acid used for the titration is found to be 24.65 cm³.
 - (i) Give THREE precautions that should be taken to ensure that the sodium carbonate, used as a standard in the above titration, is of accurate concentration.

[3 marks]

- (ii) Calculate the number of moles of sodium carbonate used for each titration, if the concentration of the stock solution is 5.65 x 10⁻² mol dm⁻³. [1 mark]
- (iii) Calculate the accurate concentration of the standardized sulphuric acid in mol dm⁻³.
 [2 marks]

Total 15 marks

4.

KINETICS AND EQUILIBRIA

- 5. The element calcium forms a number of sparingly soluble salts such as $CaCO_3$ found in limestone and CaC_2O_4 found in kidney stones.
 - (a) (i) Write the equilibrium constant expression for the dissociation of calcium carbonate in an aqueous solution. [2 marks]
 - (ii) Write an expression for the solubility product of CaCO₃ and explain its significance as it relates to sparingly soluble salts. [2 marks]
 - (b) A saturated solution of $CaCO_3$, at 25°C, is found to contain Ca^{2+} ions at a concentration of 6.7 x 10⁻⁵ mol dm⁻³.
 - (i) Calculate K_{sp} (25°C) for CaCO₃.
 - (ii) Describe the effect of adding $Ca(NO_3)_2$ and KNO_3 to separate samples of the saturated solution of $CaCO_3$. [2 marks]
 - (c) Kidney stones generally consist of partially soluble salts of calcium such as calcium oxalate, CaC_2O_4 . Foods rich in oxalate such as chocolate, spinach or celery can trigger the onset of kidney stones.
 - (i) Write an equation for the formation of calcium oxalate. [2 marks]
 - (ii) Explain the common ion effect and how it relates to the formation of kidney stones from a diet rich in oxalate, $C_2O_4^{2-}$. [2 marks]

(d) What is meant by 'Le Chatelier's principle'?

[2 marks]

[3 marks]

Total 15 marks

CHEMISTRY OF THE ELEMENTS

6. NaX is a sodium halide which gives the following results on testing:

- Bubbling Cl₂ into an aqueous solution of NaX gives a red-brown solution. On addition of starch a blue-black colour forms.
- Addition of AgNO₃ to NaX(aq) gives a yellow precipitate which is insoluble in aqueous ammonia.

 (a) Identify Element X and explain the reaction taking place in EACH of the tests above. Include balanced equations in your explanations. [5 marks]

(b) Consider the halogens Cl_2 , Br_2 and I_2 .

(ii)

(i) State the trend in their colour intensity.

[1 mark]

a) State the trend in volatility of the elements.

. . .

b) Account for this trend in volatility, in terms of atomic size and intermolecular bonding. [3 marks]

02112020/CAPE/F 2008

(c) Figure 1 shows the trend in the first enthalpies of ionisation (ionisation energies) in the

- (i) State the general trend in the first enthalpies of ionisation for the elements Na to Ar as shown in Figure 1. [1 mark]
- (ii) Explain the differences observed in the first enthalpies of ionisation of the following pairs of elements:
 - a) Mg and Al
 - b) P and S
- Suggest TWO OTHER pairs of elements which should exhibit differences in their first enthalpies of ionisation as those elements given in (c) (ii) above.
 [2 marks]
- (iv) Describe the relationship between atomic radius and first enthalpy of ionisation. [1 mark]

Total 15 marks

[2 marks]

END OF TEST